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Abstract

The purpose of this research is to estimate the thermal conductivity with the inverse method which is modified by grey prediction;
herein the thermal conductivity is a nonlinear function. When the thermal conductivity is the function of position and temperature, if
one would try to obtain the thermal conductivity with the inverse method, then the measuring points of the temperature shall be distrib-
uted in whole object, consequently there would be a large number of measuring points for the relevant temperatures. The method of grey
prediction will be able to dramatically decrease the number of measuring points for the temperature accordingly. However, the method of
grey prediction should be accompanied with the prediction errors, thus the estimation of inverse method will produce a major deviation.
This paper adopts the methods of the ‘‘rolling grey prediction” and the ‘‘comparison of temperature measurement” to correct the errors
of grey prediction, and then proceed the inverse method to estimate the thermal conductivity. The estimated value obtained by the pro-
posed method and the actual value compares very well.
� 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

In the modern industry, while it is related to the fields of
designing and manufacturing, the acquirability for the
thermal conductivity is indispensable. For example, the
controllability of heat transfer in the designing of the IC
and the manufacturing of the precision machinery, and
the measurement of heat transfer for the composite and
special material.

Inverse method used for estimating the thermal conduc-
tivity with single temperature parameter by means of the
linear least-squares error method [1] had been reported in
the literature [2], wherein it is shown that there is a poten-
tial to inverse thermal conductivity containing temperature
parameter only by measuring the temperature at few mea-
suring points. But in general, the thermal conductivity of
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an object is not only acting as a function of temperature,
but also acting as a function of position as well. Therefore
if one would like to inverse the thermal conductivity of an
object via the method of temperature measurement, then it
is necessary to measure all the temperatures along the
entire length of such an object [3], and in this way, the mea-
suring points for the temperature shall be increasing along
the entire length of the object. Here, we will introduce the
grey prediction method of grey system [4,5] into the previ-
ously stated inverse process and, thus it will be able to dra-
matically decrease the number of measuring points for the
temperature so as to decrease both the measurement cost as
well as the accumulation of the errors of measurement
consequently.

In this paper, we introduce the principle of grey predic-
tion first. Next, the Linear Matrix Equation by means of
one-dimensional transient governing equation of the heat
conduction is derived, and then illustrates the relevant
method for estimating the thermal conductivity using the
inverse method. Finally, the application of grey prediction
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Nomenclature

A coefficient matrix of vector T

a development coefficient
B coefficient matrix of vector a b½ �
b grey input
C vector constructed from the unknown K

D coefficient matrix of vector C

E product of A�1 and D

h convection heat transfer coefficient
k thermal conductivity
m number of data sequence
N number of the ‘‘measuring segment” points
N s initial point of the ‘‘measuring segment”
N e end point of the ‘‘measuring segment”
n number of dispersed points
q0 heat flux of the left side
qn heat flux of the right side
S data sequence
T temperature vector
T temperature
T1 temperature of the ambient
t time
Dt increment of time
x parameter of grey prediction or spatial coordi-

nate

Dx increment of the parameter x

z background value of grey model

Greek symbols

a coefficient of z

g number of data sequence
r standard deviation
x random variable
U, K ‘‘quasi-mean thermal conductivity”

H the temperature difference between the adjacent
measure points

Subscripts

est estimated data
exact exact data
grey grey prediction data
i index of spatial coordinate
meas measured data

Superscripts

ð0Þ original data of grey prediction
ð1Þ data proceeded by AGO once
j index of time coordinate
^ index of grey forecast
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to this inverse method is elaborated. Herein, the method of
grey prediction should be accompanied with the prediction
for errors, therefore in this article, we try to correct it by
utilizing the methods of the ‘‘rolling grey prediction” [6]
and the ‘‘comparison of temperature measurement” so as
to decrease the errors of grey prediction. Besides, since
the occurrence of errors in the measurement is indispens-
able while performing the temperature measurement, in
this paper, we have also presented the comparison on
selecting the measuring points for temperatures in order
to reduce the synergistic effect on the grey prediction with
errors of measurement. The examples and conclusion dis-
closed in the last section of this article have identified the
feasibility of this method.

2. Summary of grey prediction technique

It has been more than twenty years since the grey system
theory proposed by a Chinese professor Julong Deng in the
1980s [4,5]. The analysis of grey prediction in the grey sys-
tem is to explore the unknown large amount of information
in a system containing incomplete data by utilizing the
existing small amount of information [7]. This method
establishes a grey model (GM) based on the known small
amount of incomplete information, whereas the new data
sequence generated from the known limited original data
sequence via the accumulated generating operation
(AGO) will have an obvious exponential pattern and,
hence be able to eliminate the uncertainty of the original
data sequence. Accordingly, it can establish a differential
equation to perform the fitting work and, then to predict
the unknown amount, to inversely acquire the predicted
value of the original data sequence via the inverse accumu-
late generated operation (IAGO). The grey model GM(1,1)
with a single parameter has been most widely applied, the
detailed description is given in the following.

Considering a temperature sequence (take positive tem-
perature or Kelvin temperature scale) with the number of
items larger than or equal to 4 (at least 4 items) as the ori-
ginal data

Sð0Þ ¼ fT ð0Þð1Þ; T ð0Þð2Þ; . . . ; T ð0ÞðmÞg;
m ¼ 1; 2; . . . ; g; g P 4 ð1Þ

wherein ð0Þ represents original data of grey prediction. The
data sequence proceeded by AGO once is

Sð1Þ ¼ AGO � Sð0Þ

¼ fT ð1Þð1Þ;T ð1Þð2Þ; . . . ;T ð1ÞðmÞg; m ¼ 1;2; . . . ;g; g P 4

ð2Þ

wherein

T ð1Þð1Þ ¼ T ð0Þð1Þ
T ð1ÞðmÞ ¼ T ð1Þðm� 1Þ þ T ð0ÞðmÞ; m ¼ 2; 3; . . . ; g; g P 4

ð3Þ
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Fig. 1. The schematic view showing the related positions of the measured
points and predicted points for the temperature.
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Eq. (2) indicates a monotonically increasing sequence
(exponential pattern), which can fit a differential equation,
i.e. the grey differential equation of the GM(1,1) source
model as

dT ð1ÞðxÞ
dx

þ aT ð1ÞðxÞ ¼ b ð4Þ

wherein a is called the development coefficient and b is
called the grey input, again

dT ð1ÞðxÞ
dx

¼ lim
Dx!0

T ð1Þðxþ DxÞ � T ð1ÞðxÞ
Dx

ð5Þ

Dx represents the increment of the parameter x (x can be
position, time or other usable parameter), and considered
to be constant, so we can make it as the unit amount, while
T ð1Þðxþ DxÞ � T ð1ÞðxÞ is data difference between the two
former/latter points in the data sequence, therefore

dT ð1ÞðxÞ
dx

� T ð1ÞðmÞ � T ð1Þðm� 1Þ ¼ T ð0ÞðmÞ;

m ¼ 2; 3; . . . ; g; g P 4 ð6Þ

The definition for T ð1ÞðxÞ is

T ð1ÞðxÞ ffi amT ð1ÞðmÞ þ ð1� amÞT ð1Þðm� 1Þ ¼ zð1ÞðmÞ;
m ¼ 2; 3; . . . ; g; g P 4 ð7Þ

wherein 0 6 am 6 1. Usually it is taken as the mean value
operation from the T ð1Þ sequence, namely, am ¼ 0:5.
zð1ÞðmÞ is termed background value, which can be combined
with Eq. (3) and then converted into

zð1ÞðmÞ ¼ amT ð0ÞðmÞ þ T ð1Þðm� 1Þ; m ¼ 2; 3; . . . ; g; g P 4

ð8Þ
While referring to Eqs. (6) and (7), Eq. (4) can be repre-
sented as

T ð0ÞðmÞ þ azð1ÞðmÞ ¼ b; m ¼ 2; 3; . . . ; g; g P 4 ð9Þ
The above equation is the grey difference equation of
GM(1,1) model, However, the selection of am value will
influence the accuracy of predicted value, hence it is neces-
sary to have a correction [8], whereas this is the key point
that this paper would like to look into.

With reference to Eq. (4) together with the initial condi-
tion T ð1Þð1Þ ¼ T ð0Þð1Þ, the solution for Eq. (4) with discret-
ization is

T̂ ð1Þðmþ 1Þ ¼ T ð0Þð1Þ � b
a

� �
e�am þ b

a
; m P 0 ð10Þ

wherein ˆ represents Grey forecast and T̂ ð1Þðmþ 1Þ is the
grey predicted value of the Sð1Þ. In addition, the result
obtained after performing the IAGO operation based on
Eq. (3)

T̂ ð0Þðmþ 1Þ ¼ T̂ ð1Þðmþ 1Þ � T̂ ð1ÞðmÞ; m P 1 ð11Þ

The T̂ ð0Þðmþ 1Þ in the above equation, in fact, is the pre-
dicted value of the original temperature sequence Sð0Þ. It
is found from the integration of both Eqs. (10) and (11),
that the predicted value T̂ ð0Þðmþ 1Þ can be acquired as long
as we can obtain the a and b values.From Eqs. (8) and (9),
we can obtain a matrix equation

�zð1Þð2Þ 1

�zð1Þð3Þ 1

..

. ..
.

�zð1ÞðmÞ 1

2
66664

3
77775

a

b

� �
¼

T ð0Þð2Þ
T ð0Þð3Þ

..

.

T ð0ÞðmÞ

2
66664

3
77775; m ¼ 2;3; . . . ;g; g P 4

ð12Þ
If the least square method is used, then the solution of a

and b will be easily obtained

a

b

� �
¼ ðBTBÞ�1

BTT ð13Þ

wherein

B¼

�zð1Þð2Þ 1

�zð1Þð3Þ 1

..

. ..
.

�zð1ÞðmÞ 1

2
66664

3
77775; T¼

T ð0Þð2Þ
T ð0Þð3Þ

..

.

T ð0ÞðmÞ

2
66664

3
77775; m¼ 2;3; . . . ;g; g P 4

ð14Þ
3. The derivation of physical model and inverse operation

With reference to Fig. 1, the basic assumption is as fol-
lows: (a) the ratio of the length to width of the target
should be more than 10, its length is a supposed to be unit
length; (b) the long perimeter of such target has been
wrapped up by the insulated materials; (c) there is no any
heat source inside such target; (d) its thermal conductivity
contains the positional parameter.

The governing equation for the one-dimensional tran-
sient heat conduction without heat source is given by

oT
ot
¼ o

ox
k
oT
ox

� �
ð15Þ
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Namely,

oT
ot
¼ k

o
2T

ox2
þ ok

ox
oT
ox

ð16Þ

T indicates the temperature, t indicates the time, x indicates
the positional parameter, k indicates the thermal conduc-
tivity, wherein k contains the positional parameter. Here
we add the product of density and specific heat into the
thermal conductivity.

The discretization equation after being discretizated into
n � 1 units is

T jþ1
i � T j

i

Dt
¼ kj

i

T j
iþ1 � 2T j

i þ T j
i�1

ðDxÞ2
þ kj

iþ1 � kj
i�1

2Dx
T j

iþ1 � T j
i�1

2Dx
;

2 6 i 6 n� 1; j P 0 ð17Þ

Subscript i is the dispersed point of position x and super-
script j is the dispersed point of time t. Eq. (17) can also
be converted into

Dx
Dt
ðT jþ1

i � T j
iÞ ¼

ðkj
i�1 þ 4kj

i � kj
iþ1Þ

4

ðT j
i�1 � T j

iÞ
Dx

� ðk
j
iþ1 þ 4kj

i � kj
i�1Þ

4

ðT j
i � T j

iþ1Þ
Dx

;

2 6 i 6 n� 1; j P 0 ð18Þ

In the above equation, make

Uj
i ¼
ðkj

i�1 þ 4kj
i � kj

iþ1Þ
4

;

Kj
i ¼
ðkj

iþ1 þ 4kj
i � kj

i�1Þ
4

; 2 6 i 6 n� 1; j P 0 ð19Þ

Then Eq. (18) can be represented as

Dx
Dt
ðT jþ1

i � T j
iÞ ¼ Uj

i
ðT j

i�1 � T j
iÞ

Dx
� Kj

i

ðT j
i � T j

iþ1Þ
Dx

;

2 6 i 6 n� 1; j P 0 ð20Þ

wherein Uj
i and Kj

i are able to be called ‘‘quasi-mean ther-
mal conductivity”, Uj

i indicating the ‘‘quasi-mean thermal
conductivity” between points of i � 1 and i, and Kj

i indicat-
ing the ‘‘quasi-mean thermal conductivity” between points
of i and i + 1. From the relevant positions of each dis-
persed point, it can be known Uj

i ¼ Kj
i�1. It is found based

on Eq. (19) and Uj
i ¼ Kj

i�1 that the thermal conductivity of
each dispersed point is

kj
i ¼
ðKj

i�1 þ Kj
iÞ

2
; 2 6 i 6 n� 1; j P 0 ð21Þ

In this paper, it is assumable that the heat flux at the left
side is a constant (q0). According to the energy conserva-
tion law, when i = 1 (starting point at the left side) will
be represented as the following equation:

Dx
2

ðT jþ1
1 � T j

1Þ
Dt

¼ q0 � Kj
1

ðT j
1 � T j

2Þ
Dx

; j P 0 ð22Þ
The result from re-arrangement

Dx2

2Dt
ðT jþ1

1 � T j
1Þ � q0Dx ¼ Kj

1ðT
j
2 � T j

1Þ; j P 0 ð23Þ

While 2 6 i 6 n� 1 and Uj
i ¼ Kj

i�1, it is expressed as
follows:

Dx2

Dt
ðT jþ1

i � T j
iÞ ¼ Kj

i�1ðT
j
i�1 � T j

iÞ � Kj
iðT j

i � T j
iþ1Þ;

2 6 i 6 n� 1; j P 0 ð24Þ

again, according to the energy conservation law, while
i ¼ n (end of right side), make the heat flux at the right
boundary is qj

n which is the function of time, and
Uj

n ¼ Kj
n�1, then

Dx2

2Dt
ðT jþ1

n � T j
nÞ ¼ Kj

n�1ðT
j
n�1 � T j

nÞ � qj
nDx; j P 0 ð25Þ

Based on Eqs. (23)–(25), it is applicable to develop a linear
matrix equation as

AT ¼ DC ð26Þ

wherein

A ¼

Qj
0

. .
. . .

.
0

. .
. . .

. . .
.

0

. .
.

0 Dx2

Dt 0 . .
.

0 . .
. . .

. . .
.

0 . .
. . .

.
Dx2

2Dt

2
666666666664

3
777777777775

;

Qj
0 ¼

Dx2

2Dt
� q0Dx

ðT jþ1
1 � T j

1Þ
; j P 0 ð27Þ

T ¼ � � � ðT jþ1
i � T j

iÞ � � �
� �T

; 1 6 i 6 n; j P 0 ð28Þ

D ¼

. .
. . .

. . .
.

0

. .
. . .

.
0 0

. .
. . .

.
Hj

i
. .

. . .
.

0 �Hj
i

. .
. . .

.

0 . .
. . .

.
�Dx

2
66666666664

3
77777777775
;

Hj
i ¼ ðT j

iþ1 � T j
iÞ; 1 6 i 6 n� 1; j P 0 ð29Þ

C ¼ � � � Kj
i � � � qj

n

� �T
; 1 6 i 6 n� 1; j P 0 ð30Þ

Eq. (26) will be rewritten as

T ¼ A�1DC ¼ EC; E ¼ A�1D ð31Þ

Here it is found via the linear least-squares error method of
the inverse method

Cest ¼ ðETEÞ�1
ETTmeas ð32Þ
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wherein Tmeas is the direct measured temperature, and Cest

is the estimation resulted from the quasi-mean thermal
conductivity Kj

i together with the heat flux at the right side
qj

n. Then the acquired Kj
i value is substituted back into

Eqs. (21) and (19) so as to obtain the thermal conducti-
vity kj

i . But the thermal conductivity k is a function of
position, if one would like to acquire the k using the inverse
method according to Eq. (32), it is indispensable to mea-
sure the temperature at each dispersed point. Therefore,
this method will need a large number of measuring points.
In this article, we are proposing the concept of grey predic-
tion for exploration in order to find out a better method.

4. The applications of grey prediction

With reference to Fig. 1, there are two areas that the grey
prediction proposed in this study can be applied to, the first
area is the grey prediction on temperature at the front seg-
ment of the target after temperature measurement opera-
tion, wherein the measured temperature acts as the
original data sequence of grey prediction so as to carry on
the prediction of temperature at the unmeasured points
positioned in the front segment of such target. Another area
is the grey prediction on the quasi-mean thermal conductiv-
ity K of the latter segment of the target based on the quasi-
mean thermal conductivity K of the front segment of such
target, which is estimated by the inverse method. Both per-
form the equidistant grey prediction at the positional point.

In this method, the temperature measurement at the first
measuring point (i = 1) of the target is adopted as the ref-
erence temperature, and then the temperature of N succes-
sive points (also referred to as ‘‘measuring segment”) will
be measured and taken as the original data sequence for
the grey prediction in order to perform the ‘‘rolling grey
prediction” of the temperature along the decreasing direc-
tion of x. In this way, it will be able to acquire all the tem-
perature starting from the first point (i = 1) of the target to
the ‘‘measuring segment”. If N s is the initial point of the
‘‘measuring segment”, and N e is the end point of the ‘‘mea-
suring segment”, namely we can get the temperature from
i = 1 to i ¼ N e.

The so-called ‘‘rolling grey prediction” is to take the
‘‘measuring segment” temperature (the segment tempera-
ture from N s to N e) as the original data sequence of grey
prediction to predict the temperature of the next point
through grey prediction (since it is utilizing x along the
decreasing direction in this paper, the next point indicates
the N s � 1 point), and again adopting temperature from
the N e � 1 point to the N s � 1 point as the original data
sequence in order to perform the prediction of temperature
at the next point (the N s � 2 point). Apply the same rule
and continue predicting all the way to the first point
(i = 1) of the target. The values acquired by the grey pre-
diction, however, will accompany with some inaccuracy,
and the accumulated inaccuracy cannot be underestimated.
This situation needs to be proved through the background
value.
From the background value of Eq. (8), we know that the
selection of am value will affect the predicted accuracy. The
countermeasure in this study is to use the first point (i = 1)
temperature of the target from the rolling grey prediction
and compare it with the directly measured temperature at
the same point (i = 1). If it does not fit in the set error range
(here is set as ±0.1 �C), repeat the stated rolling grey pre-
diction until it meets the requirement in order to decide
the am value. During the repetition process, start from
am ¼ 0:0, and add an increment (here is set at 1� 10�5)
when each time to repeat the rolling grey prediction until
am ¼ 1:0.

In this paper the whole target will be dispersed into 10
units (i.e. n ¼ 11), and adopt N = 4, then 1 6 N s 6 8
(1 6 N s 6 ðn� N þ 1Þ). According to Eq. (10) can be made
m ¼ N ¼ 4, thus

T̂ ð1Þð5Þ ¼ T ð0Þð1Þ � b
a

� �
e�4a þ b

a
ð33Þ

wherein a and b will be obtained from Eq. (13), namely
a
b

� �
¼ ðBTBÞ�1

BTT, based on Eqs. (8) and (9) can be

known

B ¼
�zð1Þð2Þ 1

�zð1Þð3Þ 1

�zð1Þð4Þ 1

2
64

3
75; T ¼

T ð0Þð2Þ
T ð0Þð3Þ
T ð0Þð4Þ

2
64

3
75 ð34Þ

The predicted value of the measured temperatures sequence
(T̂ ð0Þð5Þ) will be gained after performing the IAGO opera-
tion based on Eq. (3), namely T̂ ð0Þð5Þ ¼ T̂ ð1Þð5Þ � T ð1Þð4Þ.
Since it is utilizing x along the decreasing direction, the
next point indicates the N s � 1 point, i.e. T̂ ð0Þð5Þ ¼
T̂ ð0ÞðN s � 1Þ. Using the same method, we can get
T̂ ð0Þð6Þ; T̂ ð0Þð7Þ; T̂ ð0Þð8Þ; . . . ; successively, namely we can
get T̂ ð0ÞðN s � 2Þ; T̂ ð0ÞðN s � 3Þ; T̂ ð0ÞðN s � 4Þ; . . . ; T̂ ð0Þð1Þ. In
other words, the temperature can be found from i = 1 to
i ¼ N e, i.e. T̂ ð0Þð1Þ; T̂ ð0Þð2Þ; . . . ; T ð0ÞðN sÞ; . . . ; T ð0ÞðN eÞ. Also,
this temperature sequence can be written as T j

1; T
j
2; . . . ;

T j
Ns; . . . ; T j

Ne too.
While after using the grey prediction method to obtain

the temperature sequence T j
1; T

j
2; . . . ; T j

Ns; . . . ; T j
Ne, a linear

matrix equation similar to Eq. (26) could be consisted in
accordance with Eqs. (23)–(25), wherein n is replaced by
N e, and also the qj

n will be replaced by the heat flux qj
e at

the right side of the N e point, namely we can derive a linear
matrix equation again, as follows:

AT ¼ DC ð35Þ
wherein

A ¼

Qj
0

. .
. . .

.
0

. .
. . .

. . .
.

0

. .
.

0 Dx2

Dt 0 . .
.

0 . .
. . .

. . .
.

0 . .
. . .

. . .
.

2
666666666664

3
777777777775

;
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Qj
0 ¼

Dx2

2Dt
� q0Dx

ðT jþ1
1 � T j

1Þ
; j P 0 ð36Þ

T ¼ � � � ðT jþ1
i � T j

iÞ � � �
� �T

; 1 6 i 6 N e; j P 0 ð37Þ

D ¼

. .
. . .

. . .
.

0

. .
. . .

.
0 0

. .
. . .

.
Hj

i
. .

. . .
.

0 �Hj
i

. .
. . .

.

0 . .
. . .

.
�Dx

2
6666666666664

3
7777777777775

;

Hj
i ¼ ðT j

iþ1 � T j
iÞ; 1 6 i 6 N e � 1; j P 0 ð38Þ

C ¼ � � � Kj
i � � � qj

e

� �T
; 1 6 i 6 N e � 1; j P 0 ð39Þ

The representative meaning of Eq. (35) is similar to Eq.
(26), and the only difference is that the used points related
to such equation are from the first point to the N e point of
the target instead, so there are N e dispersed points. Among
such N e points, it is necessary to measure the temperature
of N points (it is adopted N = 4 in this paper) as well as
the first point of the target only.

Estimating the Kj
i and qj

e by the utilization of the
linear least-squares error method of the inverse method,
namely

T ¼ A�1DC ¼ EC; E ¼ A�1D ð40Þ
Cest ¼ ðETEÞ�1

ETTgrey ð41Þ

wherein Tgrey indicates the measured temperature plus the
temperature acquired by the grey prediction, and Cest indi-
cates the estimation for Kj

i and qj
e.

The total number of the Kj
i acquired is N e � 1, i.e.

Kj
1;K

j
2;K

j
3; . . . ;Kj

Ne�1, in addition, it needs to perform the
rolling grey prediction in the positivexdirection according
to last four successive Kj

i ðKj
Ne�4;K

j
Ne�3;K

j
Ne�2;K

j
Ne�1Þ, they

are taken as the original data sequence of grey prediction.
As a simplification, the operation performed in this section
will adopt the common mean operator, and take am ¼ 0:5,
not the variable of am value, and finally it is available to
acquire the estimation of Kj

Ne;K
j
Neþ1;K

j
Neþ2; . . . ;Kj

n�1. More-
over, it is able to obtain the thermal conductivity kj

i of each
dispersed point based on Eqs. (21) and (19), wherein
1 6 i 6 11.

Herein the process of grey prediction of Kj
i is similar to

the process of T j
i , namely the physical variable T of Eqs.

(33), (34) and (13) will be replaced by K, as follows:

K̂ð1Þð5Þ ¼ Kð0Þð1Þ � b
a

� �
e�4a þ b

a
ð42Þ

a

b

� �
¼ ðBTBÞ�1

BTK ð43Þ
B ¼
�zð1Þð2Þ 1

�zð1Þð3Þ 1

�zð1Þð4Þ 1

2
64

3
75; K ¼

Kð0Þð2Þ
Kð0Þð3Þ
Kð0Þð4Þ

2
64

3
75 ð44Þ

Again, the predicted value of the K̂ð0Þð5Þ will be gained after
performing the IAGO operation based on Eq. (3), namely
K̂ð0Þð5Þ ¼ K̂ð1Þð5Þ � Kð1Þð4Þ.

Additionally, the consideration for the practical mea-
surement error is indispensable. The practical measurement
error of temperature for the target is represented as

T meas ¼ T exactð1þ xrÞ ð45Þ

wherein Tmeas indicates the measured temperature, Texact

indicates the actual temperature, x indicates the value of
a random variable ð�1 6 x 6 1Þ, r indicates the standard
deviation for the measurement error of temperature.
5. Results and discussion

Here we reveal four examples of thermal conductivity in
different forms in order to identify the feasibility of the
method used in this paper. The initial temperature T ðx; 0Þ
and the ambient temperature T1 of such target were all
zero, and the left side heat flux q0 is a constant. Due to a
constant convection heat transfer coefficients h outside
the right boundary, there is the right side heat flux
qnðtÞ ¼ h½T ð1; tÞ � T1�. Firstly, we obtain the temperature
field of the target with the numerical method based on
the supposed thermal conductivity k x; Tð Þ together with
the above-mentioned initial condition as well as boundary
condition, wherein the temperature of this temperature
field will be taken as the measured temperature at the mea-
suring point. Upon the numerical operation, the setting for
the total length of the space is 1, and the interval is
Dx ¼ 0:1. The time interval is Dt ¼ 0:001, and the time
point for the measurement is t ¼ 0:5.

Suppose the common initial condition and boundary
condition of these four examples are

q0 ¼ 50; h ¼ 1; T1 ¼ 0; t P 0

qnðtÞ ¼ h½T ð1; tÞ � T1�; t P 0

T ðx; 0Þ ¼ 0; 0 6 x 6 1

8><
>: ð46Þ

First of all, we would like to emphasize that the initial tem-
perature T ðx; 0Þ, right side boundary condition (h or qn)
and ambient temperature T1 are all just for reckoning
the temperature field, while carrying on the grey prediction
of temperature measurement as well as the inverse method
of thermal conductivity, it is not necessary to utilize these
data at all. As long as there is an occurrence of left side
boundary condition (heat flux q0) together with the mea-
sured temperature, it is applicable to estimate both the
thermal conductivity kðx; T Þ and the heat flux qe (or qn)
with the inverse method.

The discrepancy of each example only lies in the differ-
ence in thermal conductivity kðx; T Þ, and we suppose that
the function of each thermal conductivity is as follows:
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Fig. 2. Example 1 (kðx; T Þ ¼ 1� 0:3xþ 0:01T Þ: (a) The view of the measured and predicted temperature under the measurement error r ¼ 0:00 and
r ¼ 0:02. (b) The view of the inverse and predicted ‘‘quasi-mean thermal conductivity” under the measurement error r ¼ 0:00 and r ¼ 0:02. (c) The
comparison between the estimation of thermal conductivity and actual value, while r ¼ 0:00. (d) Narration like (c), but r ¼ 0:01. (e) The estimation of
thermal conductivity under the condition with various measurement error (rÞ.

582 J.-Y. Chiang, C.-K. Chen / International Journal of Heat and Mass Transfer 51 (2008) 576–585



J.-Y. Chiang, C.-K. Chen / International Journal of Heat and Mass Transfer 51 (2008) 576–585 583
Example 1. The thermal conductivity is the function of
position as well as temperature

kðx; T Þ ¼ 1� 0:3xþ 0:01T ð47Þ

The position of measuring points for the temperature and
grey prediction point are shown in Fig. 1. The predicted
value of temperature (T) and ‘‘quasi-mean thermal conduc-
tivity” (K) are shown in Fig. 2a and b. The estimated
thermal conductivity (k) are shown in Fig. 2c–e. While
the relevant operation without including the measurement
errors ðr ¼ 0:0Þ, the result will be very satisfactory, as
shown in Fig. 2c. While the relevant operation includes
the measurement errors ðr ¼ 0:01Þ, although the estimated
value error is enlarged, the result is fair enough, besides, a
different position for the initial point of the measuring seg-
ment N s will affect the accuracy of the estimating value, as
shown in Fig. 2d. With reference to Fig. 2d, it is found
when N s ¼ 4 or N s ¼ 5, its accuracy is higher, due to the
practical measuring segment that is located at the center
section of such a target, therefore the number of grey pre-
diction points at the left side or right side is very close and,
thus the number of predicted points which need to be pro-
ceeded with the rolling grey prediction is getting less, so
that the error value accumulated upon the operation of
grey prediction will be decreased. Here, the observation is
performed with N s ¼ 5, as shown in Fig. 2e, while compar-
ing each other under the condition with various measure-
ment errors, it is shown that all the solutions acquired
are rather close to the actual values. The error values are
shown in Table 1. With reference to the table, it is found
that the difference between the estimated value and the ac-
tual value is very small; therefore the method used in this
paper is reliable.

Example 2. Thermal conductivity indicates a quadratic
function, as well as contains the positional and temperature
parameter at the same time

kðx; T Þ ¼ ðx
2 � 3xþ 3Þ

2
þ 0:01T ð48Þ

Although kðx; T Þ is the quadratic function of position, its
result was very similar to Example 1, as shown in
Fig. 3a–c. These have proved that the quadratic function
is suitable for this method, too.
Table 1
The difference between the estimation of thermal conductivity and the actual

x 0.0 0.1 0.2 0.3 0

kðx; T Þ exact 1.3822 1.3165 1.2522 1.1895 1
kðx; T Þ estimated (r = 0.00) 1.3933 1.3088 1.2462 1.1957 1
error 0.0111 0.0077 0.0060 0.0062 0
err (%) 0.803 0.585 0.479 0.521 0
kðx; T Þ estimated (r = 0.01) 1.3642 1.2818 1.2350 1.1942 1
error 0.0180 0.0347 0.0172 0.0047 0
err (%) 1.302 2.636 1.374 0.395 1

kðx; T Þ ¼ 1� 0:3xþ 0:01T (Example 1); t = 0.5, N = 4, Ns = 5, Ne = 8; error =
Example 3. Thermal conductivity indicates the exponential
function, as well as contains the positional and temperature
parameter at the same time

kðx; T Þ ¼ 1� expð0:3xÞ
2

þ 0:01T ð49Þ

If compared with Examples 1 and 2, the circumstance is the
same, but with a different function type. Nevertheless, it
also showed similar operation results, as shown in
Fig. 4a–c. Show again, the exponential function is suitable
for this method, too.

Example 4. Thermal conductivity is the function of posi-
tion only

kðx; T Þ ¼ 1� 0:3x ð50Þ

It is explainable, according to this example, that Although
the thermal conductivity is the linear function of position
only, the estimation is still applicable while using the pro-
posed method, as shown in Fig. 5a and b, wherein the ini-
tial point for the temperature measurement is assigned to
Ns = 5, the result is rather satisfactory. Even though the
different time points t ¼ 0:3, t ¼ 0:5 and t ¼ 0:7, have been
assigned upon the estimation including the measurement
errors ðr ¼ 0:01Þ, the accuracy of the results are all nearly
identical, that is to say the thermal conductivity k is simply
the function of position, which has nothing to do with the
temperature (time), as shown in Fig. 5c. While viewing
from Examples 1–4, the general applicability of the method
used in this paper is explainable.

It is noticeable, according to the above four examples,
that the type of thermal conductivity is basically different
from the type of the temperature distribution presented
by the target. Although there is a big difference among
the types of the thermal conductivity, due to the heat
absorption as well as heat transfer, it is generated a similar
smooth curve (strictly increasing or strictly decreasing) for
the temperature distribution of such target. And thus, upon
temperature measurement, the proceeding of the grey pre-
diction is facilitated to emphasize the feasibility related to
the application of grey prediction method on the inverse
thermal conductivity.

The method, proposed in the present study, used for
estimating the thermal conductivity whereas its accuracy
value, while the measurement errors r = 0.0 and r = 0.01

.4 0.5 0.6 0.7 0.8 0.9 1.0

.1285 1.0695 1.0129 0.9587 0.9074 0.8589 0.8135

.1339 1.0678 1.0111 0.9572 0.9064 0.8581 0.8128

.0054 0.0017 0.0018 0.0015 0.0010 0.0008 0.0007

.479 0.159 0.178 0.156 0.110 0.093 0.086

.1485 1.0860 1.0189 0.9613 0.9035 0.8514 0.7925

.0200 0.0165 0.0060 0.0026 0.0039 0.0075 0.0210

.772 1.543 0.592 0.271 0.430 0.873 2.581

jestimated � exactj, err = (error/exact) � 100.
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Fig. 3. Example 2 (kðx; T Þ ¼ 0:5ðx2 � 3xþ 3Þ þ 0:01T ): (a) The view of the
measured and predicted temperature under the measurement error
r ¼ 0:00 and r ¼ 0:02. (b) The view of the inverse and predicted ‘‘quasi-
mean thermal conductivity” under the measurement error r ¼ 0:00 and
r ¼ 0:02. (c) The estimation of thermal conductivity under the condition
with various measurement error (r).
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Fig. 4. Example 3 (kðx; T Þ ¼ 1� 0:5e0:3x þ 0:01T ): (a) The view of the
measured and predicted temperature under the measurement error
r ¼ 0:00 and r ¼ 0:02. (b) The view of the inverse and predicted ‘‘quasi-
mean thermal conductivity” under the measurement error r ¼ 0:00 and
r ¼ 0:02. (c) The estimation of thermal conductivity under the condition
with various measurement error (r).
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Fig. 5. Example 3 (kðx; T Þ ¼ 1� 0:3x): (a) The view of the inverse and
predicted ‘‘quasi-mean thermal conductivity” under the measurement
error r ¼ 0:00 and r ¼ 0:02. (b) The estimation of thermal conductivity
under the condition with various measurement error. (c) The estimation of
thermal conductivity measured at various time points.
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is affected by both the measurement errors and the grey
prediction errors, in which, the grey prediction can be par-
titioned into the grey prediction on the temperature of the
former segment and the grey prediction on the quasi-mean
thermal conductivity K of the latter segment. Among
them, the errors in the grey prediction on the temperature
can be corrected by means of improved rolling grey
prediction (to correct the am value by the comparison of
the measured temperature at the first point of the target),
and the common mean operation is utilized in proceeding
the grey prediction for quasi-mean thermal conductivity
K, (i.e. am = 0.5). This has been proved, even if the errors
of measurement are indispensable. It is still eligible to mea-
sure temperature of N successive points (in this paper
N = 4) in which the initial point of the measurement is
the Fifth (or fourth) of the target (i.e. Ns = 5 or Ns = 4),
in order to proceed the grey prediction, and then the fol-
lowing inverse operation will have an excellent result as
well.
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